kilin> Three Body Problem

Three Body Problem


N-body_choreographies - Scholarpedia by Prof. Richard Montgomery

QZSS; quasi-zenith satellite system

Three Points Theorem

N-body by T. Fujiwara


Figure-eight choreographies of the equal mass three-body problem with Lennard-Jones-type potentials

Hiroshi FUKUDA

(2016.07.12)

Preprint

animation by mp4 or gif

The following movies are the figure-eight solutions to the equation of motion

d2qi/dt2 = -∂U/∂qi, i = 0,1,2

with the initial conditions

q0 = (x0, y0), q1 = (-2x0, 0), q2=(x0, -y0),
dq0/dt = v(q1-q0)/|q1-q0|, dq1/dt = (0, 2v(1+(3x0/y0)2)-1/2), dq2/dt = v(q2-q1)/|q2-q1|,

which are calculated by a set of parameters (x0, y0, v) given in each movie. Periods T's of the movies are relatively correct, and unit of T is 3/14.591=0.2056 [sec].

The Newtonian three-body problem in 2D

U = Σi>j log rij

(x0, y0, v) = (x0, 0.407146x0, 1.29879), T=9.76440x0, E=3.75790+3logx0

, Δt=T/12/

The Newtonian three-body problem

U = -Σi>j 1/rij
(x0, y0, v) = (x0, 0.638775x0, 0.824678x0-1/2), T=15.9191x03/2, E=-0.695711x0-1
, Δt=T/12/

A strong force potential

U = -Σi>j 1/rij2
(x0, y0, v) = (x0, 0.778896x0, 0.742100x0-1), T=18.1407x02, E=0
, Δt=T/12/

A homogeneous potential

U = -Σi>j 1/rij6
(x0, y0, v) = (x0, 0.985945x0, 0.234675x0-3), T=61.2000x04, E=0.0467827x0-6
, Δt=T/12/

The Lennard-Jones-type potential

U = Σi>j( 1/rij12 -1/rij6)

Series α

(x0, y0, v; E) = (0.682, 0.624904, 0.657065; 0.291225), T=14.5910
, Δt=T/12/

(x0, y0, v; E) = (1.5, 1.47862, 0.0694721; 0.00409703), T=310.066

, Δt=T/12/

(x0, y0, v; E) = (1.5, 0.502649, 0.181062; 0.00312146), T=234.081

, Δt=T/12/

Series β

(x0, y0, v; E) = (0.726, 0.766265, 0.302694; 0.0274632), T=26.4590
, Δt=T/12/

(x0, y0, v; E) = (1.0, 0.956733, 0.144241; 0.00263843), T=70.8963

, Δt=T/12/

(x0, y0, v; E) = (1.0, 1.241130, 0.0717890; 0.000697053), T=130.620

, Δt=T/12/

Series γ

(x0, y0, v; E) = (0.6007, 0.748371, 0.371779; 0.0622734), T=19.5424
, Δt=T/12/

(x0, y0, v; E) = (0.8, 1.08184, 0.126051; 0.00561328), T=68.2962

, Δt=T/12/

(x0, y0, v; E) = (0.8, 1.13674, 0.0749665; -0.00519619), T=77.2852

, Δt=T/12/

Series δ

(x0, y0, v; E) = (0.6501, 0.597985, 0.304229; -0.143858), T=24.4202
, Δt=T/12/

(x0, y0, v; E) = (0.84, 0.827038, 0.126408; -0.0330865), T=66.6927

, Δt=T/12/

(x0, y0, v; E) = (0.84, 0.848830, 0.0757119; -0.0387688), T=75.9582

, Δt=T/12/

Series ε

(x0, y0, v; E) = (0.7074, 0.579781, 0.204620; -0.211945), T=35.1563
, Δt=T/12/

(x0, y0, v; E) = (0.91, 0.803912, 0.0857343; -0.0497687), T=94.6090

, Δt=T/12/

(x0, y0, v; E) = (0.91, 0.811359, 0.0540501; -0.0521151), T=104.143

, Δt=T/12/

Other figuer-eight solutions

T. Fujiwara Animation for some figure-eight solutions under Lennard-Jones potential.