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Abstract: We report on the enumeration of coloring of the regular 
polytopes in four dimensions by using Polya’s theorem.  Results are 
given by the cycle indices for the regular polytope of 5-, 8-, 16- and 
24-cell. 

 
 
 
 
 
1 Introduction 
 

In this paper, we enumerate the coloring of the polytope in four dimensions 
(Coxeter 1973) using the Polya’s theorem of combinatorial theory (Riordan 1978).  
The coloring of the polyhedron in three dimensions is frequently introduced as an 
example of the Polya’s theorem.  In higher dimensions, it is not so easy to enumerate 
the coloring of polytopes.  

We investigate four kinds of colorings; the vertex-coloring, edge-coloring, face-
coloring and cell-coloring.  The vertex-coloring of the polyhedron (polytope in higher 
dimensions) is an assignment of colors to its vertices.  Likewise, edge-, face-, cell-
coloring are assignments of colors to the edges, faces, and cells respectively. 

In section 2, we enumerate the coloring of the polyhedron in three dimensions 
using the Polya’s theorem in order to explain the ‘coloring’ problem in detail and how 
to apply the theorem.  In section 3, we describe the computational method to 
enumerate the coloring of polytopes in four dimensions by using computer.  We also 
discuss the results given by the cycle indices for the regular polytope of 5-, 8-, 16- and 
24-cell. 
 
 
 
2 Coloring of a cube 
 

In order to explain the ‘coloring’ problem and also the Polya’s theorem, we 
describe the enumeration of the coloring of a cube in three dimensions.  The theorem 
gives the enumerating generating function (or simply the enumerator) of ordered n  
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things chosen independently from a store having enumerator ),,( 21 LxxS  and taken as 
equivalent (non-distinct) if there is a permutation of a group G which sends one into 
the other.  The enumerator ),,( 21 LxxFn  is given by  

 
),,,(),,( 2121 nnn SSSHxxF LL = .                                              (1) 

 
In equation (1), ),,,( 21 nn tttH L  is called the cycle index of a permutation of a group 
G, and it is defined by 
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where 1i  is the number of 1-cycles and 2i  of 2-cycles, 
and so on, in G∈π .  kS  is the enumerator for choices of 
k  objects from the store which remain invariant under 
cyclic permutation of length k  (the only choices 
invariant for cycles of length k  are those for which all 
objects are alike). 

We enumerate the face-coloring of a cube using the six 
colors, the number of faces.  In this paper, the number of 
colors does not necessarily indicate the number of colors 
actually being used, but it simply means that it is 
possible to use up to that number of colors.  We do not 
distinguish two colorings if they can be identical by a 
suitable rotation. 

We label the six faces by 1 to 6 as shown in Fig. 1.  The group G consists of the 24 
permutations which represent the rotation of the cube.  Every element π  of the G is 
tabulated in Table 1 along with )(πC .  The cycle index of G is thus given by 
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Substitution of the enumerator kS  for six colors 
 

kkk
k xxxS 621 +++= L                                                 (4) 

 
to equation (3) yields the enumerator ),,,( 6216 xxxF L  for the face-coloring of cube 
by six colors.  The term 621

621
iii xxx L represents that 1i  faces are colored by the color 1x , 

and 2i  faces are colored by the color 2x , and so on.  Therefore if we put 
1621 ==== xxx L  in the enumerator ),,,( 6216 xxxF L , we obtain the number 2226 

of the face-coloring of cube by six colors. 
For vertex-coloring of cube, the cycle index 
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Fig. 1. Cube. 
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of its eight vertices and the enumerator kS  for eight colors 
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gives the number 701968 of vertex-coloring of cube by eight colors.  Finally, the 
cycle index of 12 edges 
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gives the number 371513523888 of edge-coloring of cube by 12 colors. 
 

 
Table 1. Elements π  and )(πC  of group G for rotation of a cube 
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3 Coloring of regular polytopes in four dimensions 
 

In order to enumerate the coloring of polytopes in four dimensions, the rotation 
group G stated above is necessary.  We obtain the element π  of the G from the 
permutation P of vertices.  The permutation P which satisfies the following conditions 
is the element of the rotation group G.  (A) For all edges, set of vertices of an edge is 
transformed by permutation P into that of another edge or stays the same.  (B) The 
same goes for vertices of all faces.  (C) The same goes for vertices of all cells.  (D) 
Determinant of the transformation matrix of coordinates of vertex which corresponds 
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to P is positive.  In order to complete the whole permutation, we initially set a part of 
the permutation which satisfies the conditions (A)—(C).  When all three are met, we 
continue the permutation to its completion.   

For the regular polytope of 5-cell, we obtain cycle indices  
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of its 5 vertices for vertex-coloring and  
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of its 10 edges for edge-coloring.  The cycle indices for face-coloring and cell-
coloring are identical with those for edge-coloring and vertex-coloring, respectively, 
because of the self-duality. 

For the regular polytope of 8-cell, we obtain cycle indices  
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of its 16 vertices for vertex-coloring, 
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of its 32 edges for edge-coloring, 
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of its 24 faces for face-coloring, and 
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of its 8 cells for cell-coloring.  The cycle indices of the regular polytope of 16-cell for 
vertex-coloring, edge-coloring, face-coloring, and cell-coloring are identical with 
those of 8-cell for cell-coloring, face-coloring, edge-coloring, and vertex-coloring, 
respectively, because of duality between 16-cell and 8-cell. 

For the regular polytope of 24-cell, we obtain cycle indices,  
 



 12

)361232489648

14472361832(
576
1),,,(

5
4

2
2

6
4

3
6

3
2

4
6

2
12

8
3

3
8

11
2

2
1

5
4

4
1

10
2

4
1

6
3

6
1

12
2

24
1242124

tttttttt

ttttttttttttttH

++++++

++++++=L
, 

 
of its 24 vertices for vertex-coloring and 
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of its 96 edges for edge-coloring.  The cycle indices for face-coloring and cell-
coloring are identical with those for edge-coloring, and vertex-coloring, respectively, 
because of the self-duality. 

Using the same number of colors as the number of vertices, the number of vertex-
coloring, obtained with the above indices, is shown in Table 2.  Likewise, the number 
of edge-, face-, and cell-colorings are shown in Table 2 as well. 
 

Table 2. Number of coloring for regular polytope 
5-cell 

vertex, cell 127 
edge, face 166920040 

8-cell (16-cell) 
vertex (cell) 96076862179356736 
edge (face) 7611987694431786032465720642117699749854576640 
face (edge) 6946540504430644998370054972800 
cell (vertex) 102726 

24-cell 
vertex, cell 2315513501476956735839749356000 
edge, face 34483861201359023577389107012981965928313060 

57838791880900258968549927553141895551501201 
46025625062983503708752006856211231161205525 
08537727234555358979650823158751389463486852 

267157487616 
 

For the regular polytope of 600-cell, we could not obtain the rotation group G by 
using computer, because the ratio of |G|=7200 and the number of permutations 120! of 
its 120 vertices is very small.  Since we create the rotation group G for the polytope 
by permutation of its vertices by using computer, we can enumerate any kind of 
polytope if the number of its vertices is not as large as that of the 600-cell. 
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